arXiv:2311.08108v2 [quant-ph] 28 Jun 2024

Many-body entropies and entanglement from polynomially-many local measurements

Benoit Vermersch,™? 3 Marko Ljubotina,* J. Ignacio Cirac,” ¢ Peter Zoller,>3 Maksym Serbyn,* and Lorenzo Piroli”

YUniv. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
2 Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

3 Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, 6020 Innsbruck, Austria

II.

IIT.

IV.

S Munich Center for Quantum Science and Technology (MCQST), Schellingstrafe 4, D-80799 Miinchen, Germany

4 Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
5 Mag-Planck-Institut fir Quantenoptik, Hans-Kopfermann-Strafe 1, D-85748 Garching, Germany

" Dipartimento di Fisica e Astronomia, Universita di Bologna and INFN,
Sezione di Bologna, via Irnerio 46, I-40126 Bologna, Italy
(Dated: July 1, 2024)

Estimating global properties of many-body quantum systems such as entropy or bipartite entan-
glement is a notoriously difficult task, typically requiring a number of measurements or classical
post-processing resources growing exponentially in the system size. In this work, we address the
problem of estimating global entropies and mixed-state entanglement via partial- transposed (PT)
moments, and show that efficient estimation strategies exist under the assumption that all the
spatial correlation lengths are finite. Focusing on one-dimensional systems, we identify a set of
approximate factorization conditions (AFCs) on the system density matrix which allow us to re-
construct entropies and PT moments from information on local subsystems. This yields a simple
and efficient strategy for entropy and entanglement estimation. Our method could be implemented
in different ways, depending on how information on local subsystems is extracted. Focusing on
randomized measurements (RMs), providing a practical and common measurement scheme, we
prove that our protocol only requires polynomially-many measurements and post-processing oper-
ations, assuming that the state to be measured satisfies the AFCs. We prove that the AFCs hold
for finite-depth quantum-circuit states and translation-invariant matrix-product density operators,
and provide numerical evidence that they are satisfied in more general, physically-interesting cases,
including thermal states of local Hamiltonians. We argue that our method could be practically
useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today’s

quantum platforms.
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ment schemes of many-qubit states which are efficient
and yet simple enough to be performed in current noisy
intermediate-scale quantum (NISQ) devices [10, 11].
This problem has motivated new ideas and protocols
to improve our ability to characterize complex quan-
tum states. A notable example is that of the so-called
randomized-measurement (RM) toolbox [12-15], which
has provided us with novel opportunities to experimen-
tally investigate entanglement, a cornerstone in both
quantum-information [16, 17] and quantum many-body
theory [18, 19].

For instance, paralleling earlier experiments based on
quantum interference [20-22], cf. also Refs. [23-26], pure-
state entanglement can be detected by exploiting the two-
copy representation of subsystem purities [13, 15, 27-29],
as is now routinely done in various experimental plat-
forms [27, 30-33]. RMs have been also applied to study
both mixed-state bipartite entanglement, based on the
estimation of the so-called partial-transposed (PT) mo-
ments [34, 35], and multipartite entanglement, as char-
acterized by the quantum Fisher information [36-39].

Despite these developments, estimating global prop-
erties of quantum systems with a very large number of
qubits N remains a difficult task. In particular, while
RM approaches to estimate any local observable are
more efficient than performing full state tomography [40—
55], estimating global properties requires performing
exponentially-many measurements or post-processing op-
erations. Therefore, it is unfeasible to significantly scale
up existing protocols to probe global purities and bipar-
tite entanglement [13, 15, 27-29, 35], raising the question
of whether these quantities will be experimentally acces-
sible at all as larger NISQ devices become available.

In this work, we address precisely the problem of esti-
mating global entropies and PT moments in many-qubit
systems, and show that efficient strategies exist under the
assumption that all spatial correlation lengths in the sys-
tem are finite. This condition encompasses a large class
of physically interesting cases, including ground and ther-
mal states of local Hamiltonians, and is thus very natural
when considering NISQ devices from the point of view of
quantum simulation [56-58].

In more detail, we focus on one-dimensional (1D) sys-
tems and put forward a strategy for the estimation of
entropies and PT moments, requiring only polynomially-
many measurements and post-processing operations.
Our protocol is provably accurate for states satisfying
a set of approzimate factorization conditions (AFCs),
which express the absence of long-range correlations and
which are shown to be a general feature of short-range
correlated states. The basic idea, which is conveyed in
Fig. 1, is that the AFCs allow one to reconstruct global
purities and PT moments from local information. The
efficiency of our method is independent of how local in-
formation is extracted (for instance, this could be done
via full tomography of certain reduced density matrices
or via protocols using multiple physical copies, as dis-
cussed later). However, we will focus on an implementa-
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Figure 1. A 1D quantum system S is partitioned into adja-
cent intervals I; of size k, |I;] = k. In this work, we con-
sider extracting the purities over I; and I; U I;11 using the
classical-shadow approach [15]. Performing M local measure-
ments with respect to randomly chosen bases and classical
post-processing operations, they yield faithful estimators for
Tr[p?], denoted by Pée) [I]. Such subsystem-purity estimators
are then combined to obtain a prediction PQ(E) for the global
purity. The accuracy of the method is controlled by k£ and
the state correlation lengths.

tion making use of the standard RM toolbox [12]. Our
motivation is two-fold. On the one hand, there is a rich
literature studying the statistical errors associated with
reconstructing purities and PT moments using RM mea-
surements, allowing us to make our estimates very ex-
plicit. On the other hand, RM schemes are a very prac-
tical tool, which is now routinely employed in various
experimental platforms [12-15].

The proposed approach is different from full tomo-
graphic methods relying on prior assumptions on the
system state. There, a common strategy is to as-
sume that the latter is described by a sufficiently sim-
ple ansatz wavefunction, and estimate the values of its
free parameters. This logic was first put forward in the
context of matrix-product states (MPSs) [59-62], while
recently extended to matrix-product density operators
(MPDOs) [63-67], Gibbs states [68-73], permutation-
invariant states [74-76], low-rank states [77], stabi-
lizers [78], tensor- and and neural-network wavefunc-
tions [79-84]. While these methods may be practically
very useful, they also face drawbacks. For instance, as we
discuss in more detail in Sec. III A, an accurate estima-
tion of, say, global purities might require reconstructing
the state up to exponential precision, thus leading to un-
practical overheads in N. On the contrary, our approach
does not learn the state wavefunction, targeting purities
and PT moments directly, cf. Fig. 1.

Finally, we mention that our ideas could be extended,
in some cases straightforwardly, to probe other types of
quantities generally requiring exponentially many mea-
surements, including participation entropies [85-91] or
stabilizer Rényi entropies [92], which were recently con-



sidered in the many-body setting [92-99]. In addition,
while we will focus on 1D systems, where analytic and
numerical analyses are simpler, we expect that our ap-
proach could be generalized to higher spatial dimensions.
Therefore, our work also opens up a number of important
directions for future research.

The rest of this manuscript is organized as follows.
After reviewing a few preliminary notions and tools in
Sec. I, we start by introducing the main ideas underly-
ing our approach in Sec. III. To this end, we consider the
class of so-called finite-depth quantum-circuit (FDQC)
states, which provide an ideal toy model for short-range
correlated many-body quantum states. Their minimal
structure allows us to remove unnecessary technical com-
plications from the discussion, and present the logic of
our method in the simplest possible setting. We consider
both purities (Sec. IITA) and PT moments (Sec. IIIB),
working out efficiency performance guarantees for their
estimation.

The most general form of our protocol is presented in
Sec. IV. After introducing the AFCs in Sec. IV A we rig-
orously derive performance guarantees for the accurate
estimation of the purity and PT moments (Sec. IV B) un-
der the assumption that the state to be measured satisfies
the AFCs. We then discuss the generality of the AFCs,
proving that they are satisfied in translation-invariant
MPDOs (Sec. IV C), and presenting numerical evidence
for their validity in thermal states of local Hamiltonian,
cf. Sec. IVD. We also present a full classical simulation
of the measurement protocol (Sec. IV E), studying in a
concrete example the typical number of measurements re-
quired to estimate the bipartite purity of area-law pure
states.

Next, in Sec. V we discuss a few natural examples of
highly mixed states where bipartite entanglement can be
detected for large system sizes by estimating just the first
few PT moments. Since the latter can be very simply ex-
tracted by our approach, we argue that our results could
be practically useful to probe mixed-state entanglement
in experimentally available noisy quantum platforms. Fi-
nally, we report our conclusions in Sec. VI, while the most
technical parts of our work are consigned to several ap-
pendices.

II. ENTANGLEMENT AND RANDOMIZED
MEASUREMENTS

A. Mixed-state entanglement and PPT conditions

We consider a system of N qubits, denoted by S. Given
a region I C S, the associated Hilbert space is H; ~
C®211 where we denoted by |I| the number of qubits in
I. We will be interested in the Rényi entropies of the
region [

Sn[I] =

—— P, [1], (1)

where
Pnll] = Tr[p7], (2)

and pr is the reduced density matrix on the region I.
For n = 2, Ps[I] coincides with the purity, which is a
simple probe for the subsystem entropy, with Ps[I] = 1
and Py[I] = 21! for pure and maximally mixed states,
respectively.

Consider now a partition of S into two disjoint sets
S = AU B, yielding Hs = Ha ® Hp. If the system
is in a pure state |¢) ;5 € Hs, its bipartite entangle-
ment is quantified by the Rényi entropies S, (pa) [17].
Conversely, when the state of the system is mixed, its
entanglement can be quantified by the logarithmic nega-
tivity [100, 101]

E(p) =13 In, )

where the sum is over all eigenvalues {\;}; of the opera-
tor pz‘j‘g, and (-)™4 denotes partial transpose with respect
to subsystem A. The spectrum of the PT density matrix,
and hence the logarithmic negativity, is completely fixed
by the PT moments

= [(0%8)"] (1)

forn=1,2,...,dim(Hs ® Hp). Note that p; = 1, while
the second PT moment coincides with the purity, ps =
P [35].

The importance of the PT moments is two-fold. On the
one hand, they can be accessed directly via RMs [34, 35]
(or using quantum interference [102, 103]), see Sec. IIB.
On the other hand, the knowledge of the first few PT mo-
ments is enough to certify bipartite entanglement based
on the non-positivity of the partial-transposed density
matrix [34, 35, 104-106], or to detect different types of
entanglement structures [107]. In this work, we will con-
sider a particular set of conditions on the PT moments
to certify bipartite entanglement, which were derived in
Refs. [35, 106] and which we call the p,-PPT conditions.
Denoting by SEP the set of separable, i.e. not entangled,
states in S, the p,-PPT conditions take the form

p E€SEP = pupn_s > ph_;. (5)

Therefore, when the state of the system p violates the
pn-PPT conditions, it is entangled, and the difference
P2 _1 — PnPn_2 is a probe for mixed-state entanglement.
Note that, for n = 3, Eq. (5) coincides with the relation
first derived in Ref. [35]. These conditions are in general
not optimal and are a strict subset of those derived in
Ref. [105, 106]. Still, their simplicity makes them partic-
ularly convenient for our purposes.

B. Randomized measurements and classical
shadows

The power of RM schemes lies in the fact that they
need not be tailored to a specific property of the sys-



tem. Rather, one performs measurements which are ran-
domly sampled from a fixed ensemble independent of the
observable of interest. Subsequently, the outcomes are
processed differently depending on the quantity to be es-
timated [28, 29, 108, 109]. Denoting by p the system
density matrix, this approach gives us access to all ob-
servable expectation values Tr[pO] and, more generally,
to multi-copy objects of the form Tr[p®"0], where the
integer n > 1 is called the copy (or replica) index.

In this section, we recall the basic aspects of RMs used
in our work. While the logic explained in the next sec-
tions may be implemented in different ways, we will fo-
cus on a set of protocols making use the (local) classical
shadows introduced in Ref. [15], a prominent element in
the RM toolbox [12]. We briefly recall the main aspects
of the formalism, while we refer to Refs. [12, 15] for a
thorough introduction.

In what follows, we denote by |0); and [1); the basis
elements of the local computational bams correspondmg
to qubit j, spanning H; ~ C2. In the classical-shadow
framework, one performs a set of M measurements (one
per experimental run, each labeled by an integer ), con-

sisting of local unitary operations [] j uy) followed by a
projective measurement onto the computational basis

with k; = 0,1. The unitaries are sampled from a Haar-
random ensemble, identically and independently for each
qubit j and experimental run r, see Fig. 2. Denoting by

{k;r)} the set of outcomes of this two-step process, the

values {k;r)} and the unitaries {ugr)} are used to define
the so-called classical shadows

o =@ [ () K 010 1) 0
€S
which can be classically stored in an efficient way.

As mentioned, the measurement protocol does not de-
pend on the observable of interest. Rather, one adapts
the post-processing operations on the classical shadows
based on the quantity to be estimated. For instance,
given any observable O, an estimator for its expectation
value is

= ZTr Op(r) . (8)

It is easy to see that 6 is faithful, 7.e. unbiased, while dif-
ferent bounds for the statistical variance of this estimator
may be derived depending on the locality properties of
O [12, 15].

It is important to recall that classical shadows also give
access to entropy and PT moments. Let us consider in
particular the purity, which is given by Eq. (2) for n = 2.
For this quantity, the classical shadows allow us to write
the estimator [15]

).

Py =

M(M-1) Z Tr (py)pl

r;ér/

<

iy
=y -

N
.y -

w0

)

Figure 2. (a): Within the classical-shadow approach, each
measurement process consists of random on-site unitaries fol-
lowed by local projective measurements. Their outcomes
are stored and later post-processed to construct the classical
shadows. (b): Pictorial representation of a local finite-depth
quantum circuit. The gates are arranged in a brickwork pat-
tern, forming layers of mutually commuting unitary opera-
tions acting on pairs of neighboring qubits. Lower (upper)
dangling legs correspond to the input (output) qubits. The
depth of the circuit is the number of applied layers. In this
picture, the depth is ¢ = 3.

where p; is defined as in Eq. (7). P©)[I] is a faithful
estimator. Note that, alternatively, one can use another
estimator for the purity [13, 27, 29] that provides robust-
ness against miscalibration errors using the same data.

The statistical errors associated with 732(6) [I] are quanti-
fied by its variance, which can be bounded by [15, 35, 38]

Var [Pﬁ [1]} <4 (%ZQ[I]) +2 (5_11)2 . (10)

where |I] denotes the number of qubits in I. This bound
is known to be essentially optimal [35, 38], telling us that
an exponentially large number of measurements is needed
to estimate the purity.

The PT moments (4) can be treated similarly. In this
case, one constructs the estimator [35]

(e)[AB] LM\
nl
x Z Tr ([l [ ] (1)
r1FET2FE L F Ty

Once again, p'f’ [AB] is faithful and it is possible to de-
rive explicit bounds on its variance, although it becomes
increasingly involved for higher n. For instance, for n = 3
one has [35, 38]

|AB|

Var [pge) [AB]] <9 Tr (pAB)

23|AB|

26\AB|

ar—ap 1

Estimating the statistical errors by the variance,
Egs. (10) and (12) imply that, in order to guarantee an
accurate reconstruction of the purity and PT moments
of the system, exponentially-many measurements in its
size are needed. As mentioned, this makes it unfeasible
to significantly scale up previous experiments making use



of this strategy [13, 15, 27-29, 35]. The goal of this work
is to show that these limitations may be overcome under
assumptions which are very common in the context of
many-body physics, and thus also natural from the point
of view of quantum simulation. Namely, we will put for-
ward a set of protocols for entropy and entanglement
estimation which are provably efficient assuming that all
spatial correlation lengths of the state to be measured
are finite. We will focus on 1D systems, where analytic
and numerical analyses are simpler, although we expect
that our approach could be generalized to higher spatial
dimensions, see Sec. VI.

III. A TOY MODEL FOR THE ESTIMATION
PROTOCOL

In this section we introduce the main ideas underlying
our approach, focusing on a simplified setting where we
can get rid of unnecessary technical complications. We
analyze the case of FDQC states, where the state to be
measured is prepared by a shallow (local) quantum cir-
cuit

L
o= (®a; | [v9]'". (13)
j=1

where L is length of the system, 4.e. the number of qubits
(we use the letter L instead of N, as in the previous
section, to emphasize that we are focusing on the 1D
case). Here o; are arbitrary single-qubit density ma-
trices, while U® is a local circuit of depth £, namely
U®) =V, .- VaVy, where V; contains quantum gates act-
ing on disjoint pairs of nearest-neighbor qubits, cf. Fig. 2.
We will assume that /¢ is fixed, i.e. not increasing with
the system size. We do not ask for translation symme-
try and, unless specified otherwise, assume open bound-
ary conditions. The gates making up U®) can be arbi-
trary, i.e. they need not be taken out of some finite gate
set. The FDQC states (13) have a very simple structure
from the point of view of many-body physics, but are
known to approximate physically-interesting states such
as MPSs [110, 111] and, more generally, ground states of
gapped local Hamiltonians [112-115] .

Throughout this section, we will assume that we know
that the state of the system is exactly of the form (13)
for some finite /. We develop a protocol to efficiently
estimate the purity and the PT moments of such a state,
based on this knowledge. The protocol only takes the
depth of the circuit, ¢, as an input and does not make use
of state tomography. In fact, it will be later generalized
replacing the assumption of the FDQC structure with
the AFCs, which make no explicit reference to the form
of the state wavefunction.
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Figure 3. (a): Partition considered in Eq. (14): A 1D interval
I is divided into three disjoint regions A, B, and C', where B
separates A and C. (b): Partition considered in Eq. (26): A
1D interval I is divided into two halves, A and B. Each half
is partitioned into two regions A = A1 U Ay, B = B1 U By

A. Purity estimation: Factorization formula

The starting point of our method is a factorization
property for powers of the system density matrix. Let I
be any interval of adjacent qubits (I can coincide with the
full system S). Consider a partition I = AUBUC, where
B separates A and C and denote by |B| the number of
qubits in B, cf. Fig. 3(a). Based on the fact that state
is prepared by a finite depth circuit, Eq. (13), one can
prove

Trap(p%5)TrBe (P
) = e el

for any partition with |B| > 2¢ — 1, where px denotes
the density matrix reduced to the interval X and XY
is a short-hand notation for X UY. Now, let {Ij}le
be a collection of adjacent intervals covering the system
S, with |I;| = k > 2¢ — 1, and assume without loss of
generality that R = L/k is an integer, cf. Fig. 1. By
applying Eq. (14) iteratively, we arrive at

R—1
Hj:l TrIjUIj+1(p%jUIj+1)
R—1
[L= Trg, [/’i]

where p is the system density matrix (13). A proof of
Egs. (14) and (15) is given in Appendix A.

Equation (15) is remarkable because its right hand side
(RHS) only depends on the purities of subsystems con-
taining up to 2k qubits, and thus gives us a natural basis
for an efficient estimation strategy of the global purity.
The idea is to first reconstruct the “local” purities Tr[p?]
(with either I = I; or I = I; UI;11), and subsequently
plug their estimated values in the RHS of Eq. (15), yield-
ing the global purity estimate. This method is more effi-
cient than directly targeting Tr(p?), as the local purities
can be reconstructed from a number of measurements
growing exponentially in &, not in L, see Eq. (10). Be-
low, we give a more precise description of the protocol,
proving that an accurate estimation of the purity only re-
quires a polynomial (in L) number of measurements and
post-processing operations.

We consider performing M; measurements (i.e. exper-
imental runs) to estimate the purity of each interval I,
with I = I; or I = I; UI;;1, see Eq. (15). The set of

Tr(p?) = NGE)




measurements M; is only used to determine the purity
over I and for simplicity we perform the same number
of measurement M; = M for each interval. Although
this increases the total number of experiments Mp by a
factor L, since

Mr =S Mo LM, (16)
I

this procedure guarantees that statistical errors associ-
ated with distinct regions are independent and facilitate
their rigorous analysis. For each interval, we then con-
struct the estimators P(€)[I] given in Eq. (9), and define

15 P U L)
15, P

which is our estimator for the global purity. Since the
latter is typically exponentially small in L, we quantify

rée) = , (17)

the accuracy of rge) by the relative error

(18)

Next, we seek to bound the number of measurements
required to guarantee that e, is small with high prob-
ability. This problem is solved in Appendix B 1, where
we prove the following result: for any arbitrarily small
0 > 0, choosing

s 28k L2 24k+10 19
> max 2%, 12 (19)

the probability that |e,| > J satisfies

24k+1 1 L3

Prilerd =01 < “gyanr

(20)
where we recall that k& = |I;]|. The proof of Eq. (20) is
based on a careful analysis of how the error on each factor
in (17) affects the global purity, making use of the statis-

tical independence of 772(6) [I] for different I and the so-
called Chebyshev’s inequality. Eqgs. (16), (19), and (20)
then imply that polynomially-many (in L) measurements
and post-processing operations are enough to accurately
estimate the purity, as anticipated.! We can rephrase
this result in a more transparent way. For a given con-
fidence level v = Pr[le,| < 4], Eq. (20) implies that it is
enough to take a number of measurements

24lc+1 1 LS

M> ———.
= 2R 7)

(21)

1 The polynomial scaling of the post-processing operations follows
straightforwardly from the definition (9), because the number of
elements in each sum is ~ M2, where M = O(L?3).

Before concluding this section, a few remarks are in
order. First, it is important to note that the individ-
ual factors in the formula (17) could also be extracted
using different RM schemes or even standard tomogra-
phy for the density matrices p;. Indeed, the possibility
of estimating the global purity from polynomially-many
measurements does not depend on the fact that we are
using classical shadows, but rather on the factorization
property (17) (since its RHS only involves local subsys-
tems). Still, classical shadows and RMs in general offer
several advantages compared to state tomography. For
instance, while RM schemes to estimate Tr[p?] require a
number of measurements scaling exponentially in |I], the
exponents are typically favorable compared to tomogra-
phy [27, 31, 116]. In addition, classical shadows make it
very easy to rigorously bound statistical errors, facilitat-
ing the analyses presented throughout this work.

Second, taking the logarithm of Eq. (15), we obtain

R—1 R—-1
5@ () = Z 5@ (Prvrs) = Z s (or;), (22
j=1 Jj=2

where S®)(p) = —InTrp? is the second Rényi entropy.?
Therefore, our results can equivalently be formulated in
terms of Rényi entropies, rather than purities (note that
a small relative error on the latter implies a small additive
error on the Rényi entropy).

Finally, as the state (13) can be represented exactly as
a matrix-product operator (MPO) [129], it is instructive
to compare our strategy with those based on MPDO to-
mography [63-67]. In many cases, these methods can
efficiently provide an estimate of the system density ma-
trix p(®), satisfying

1p'® = pll1 <6, (23)

where || - ||; denotes the trace norm, while § = O(L~%)
is a small parameter vanishing polynomially in L. While
this approximation allows us to accurately estimate the
expectation value of any local observable, it might not
be enough to extract the global Rényi-2 entropy. Indeed,
given p and o with § = ||p — ol|1, we have the following
bound, which is known to be tight in general [130, 131]

|ymm—w”w>sfﬁ—ﬂ—%f‘@?:>

~2Ls. (24)

Therefore, a precise estimation of the Rényi-2 entropy
requires an exponentially accurate reconstruction of the
system density matrix, typically leading to unpractical

2 We note that similar formulas previously appeared (albeit for the
von Neumann, rather than for the Rényi entropy) in the context
of approximate Markov-chain states [117-120], see also [121-128].



overheads in L 3. Instead, our method gets around this
technical issue, as it does not rely on state tomography.

B. The normalized PT-moment estimation

The ideas presented in the previous section may be ap-
plied to the PT moments, although a few subtleties must
be taken into account. Denoting by pgf) our estimate

for p,, one is tempted to ask for a protocol that makes
the relative error [p\) /p, — 1| sufficiently small. This
is, however, problematic: contrary to the moments P,,,
it is non-trivial to bound |p,| from below by a positive
number. In order to get around this issue, we define the
normalized PT moment

Pn [AB }

PulAB) = 5 TP B

(25)

and, instead of focusing on the relative error, we ask for
an accurate estimate of p, up to a small additive error.
The motivation for this choice is two-fold. First, as it will
be clear later, for FDQC states one can show that p,[AB]
is independent of the system size. Therefore, contrary
to the purity, one does not have to deal with numbers
which are exponentially small in L. Second, we will see
in Sec. V that entanglement certification based on the
prn-PPT conditions requires approximating p,[AB] up to
a small additive error.

In order to estimate the normalized PT moment (25),
we once again rely on certain factorization properties of
the density matrix. Consider the FDQC state (13) and
take a partition of the system as in Fig. 3(b), with |B;| =
|As| = k > 2¢ — 1, where £ is the depth of the circuit. As
we show in Appendix A 2, one can prove

(o) = () T, oy 0

This equation implies

Pn|AB] = 5,[A2B4], (27)

where we defined

[ (p25)"

Note that s, [A2B;] only depends on the density matrix
of a local subsystem and does not scale with the system

3 We note that a precise estimation of the von Neumann entan-
glement entropy, instead, only requires to reconstruct the target
state up to an error which decays polynomially in the system
size [132]. However, computing the von Neumann entanglement
entropy for MPDOs is expected to be computationally hard in
general.

size, as anticipated.* Therefore, it is possible to obtain
an accurate estimate from a number of measurements
and post-processing operations independent of L, for any
arbitrary small additive error.

To see this explicitly, we consider the following proto-
col. We introduce an estimator for s,,[A2B;], namely

pgf) [A2B1]

s(e) =
Pi[Ao]PL7 [B1]

n

(29)

The estimators for the moments Py [A,], P [By] and

the PT-moment p{’ [A2Bj] are defined in Eq. (11). We
compute each of them out of M different classical shad-
ows, so that the total number of experimental runs is
My = 3M. This is done so that the statistical errors
are independent, facilitating their analysis. After these
steps, we obtain an estimate for s,[A2B1], and thus, due
to Eq. (26), for p,[AB].

Importantly, we can bound the additive statistical er-
ror which affects our estimate, namely

o = |59 — pu[AB]| . (30)
For instance, focusing for simplicity on the case n = 3,

we prove in Appendix B2 the following result: for any
small § > 0 and choosing

211k+9
M > 27—, (31)
we have
211k+9
Pr [|s§” - paf4B]| > 6] < 8155 (32)

where |As| = |By| = k > 2¢ — 1, with ¢ being the circuit
depth. This result is proved by the same techniques used
to derive Eq. (20). Again, it is useful to rephrase our
result in terms of the confidence level ~, yielding

211k+9
=)0

Equation (32) states that a number of measurements
not scaling with the system size is enough to guaran-
tee that ps is approximated with arbitrary precision and
high probability. Explicit performance guarantees such
as (32) for higher integer values of n are more cumber-
some to derive, and will be omitted. Still, based on the
analysis presented in Appendix B2, one can easily see
that inequalities of the form (32) hold for higher n too,
where the RHS is always independent of L.

M > 81 (33)

4 Because of the FDQC structure, the reduced density matrix
over the region A2B; is independent of the system size for
L>|A2By|+20—1.



IV. FINITE-RANGE CORRELATED STATES

In this section we present and discuss the most general
form of our protocols. First, in Sec. IVA we give the
definition of the AFCs, which state that the n-th pow-
ers of the system density matrix effectively factorize over
regions of size smaller than some length scales &,. Our
definition might appear arbitrary at first, but we show
later that such AFCs hold in large classes of states (see
Secs. IVC and IV D). Next, in Sec. IV B we describe a
protocol for purity and PT moment estimation in states
satisfying the AFCs. Such protocols take as an input the
value of the length scales &, (assumed to be known) and
the desired accuracy, yielding as an output the numer-
ical estimations for the purity and PT moments. The
protocols only require polynomially-many (in L) mea-
surements and post-processing operations. In addition,
we can rigorously prove that the estimation errors are
smaller than the desired threshold with high probability.
Finally, we discuss the generality of the AFCs, proving
analytically that they hold for MPDOs (Sec. IV C) and
presenting numerical evidence for their validity in Gibbs
states of local Hamiltonians (Sec. IV D).

A. The approximate factorization conditions

The strategies developed so far rely on exact factoriza-
tion conditions on the system density matrix, which are
related to the sharp light-cone structure of correlation
functions in FDQC states [110, 133, 134]. Away from
these ideal cases, Egs. (14) and (26) do not hold, but it
is natural to conjecture that they can be modified taking
into account exponential corrections over scales governed
by the system correlation lengths. This is done in this
section, where we introduce a set of AFCs generalizing
Egs. (14) and (26), respectively.

Given a state p, we say that it satisfies the purity AFC
if there exist ag, f2,k. > 0 such that, for any interval
I = AUBUC as in Fig. 3(a), with |B| = k > k., we
have

To(p2)-! Trap(php)Treo(Ppe) | - ane=IB1 (34)
! Trp(pp) -

Similarly, we say that p satisfies the PT-moment AFCs
if there exist a,, 8, > 0 and an integer k. such that

PnlAB] = s, [A2B1]| < e PrlA2IHIBD 0 (35)

for all partitions as in Fig. 3(b) with |B;| = |42 = k >
k.. Here p,[AB] and s, [A2B;] are defined in Eqgs. (25)
and (28), respectively. Equations (34) and (35) obvi-
ously generalize (14) and (26), introducing exponential
corrections over length scales &, = 3, 1.

While the definitions (34) and (35) might appear arbi-
trary at first, we show later that such AFCs hold in large
classes of states (see Secs. IVC and IV D). This state-
ment is very intuitive: on the one hand, we have shown

that they hold exactly for FDQC states; on the other
hand, in the absence of topological order ground states
are known to be well-approximated by the latter [112—
115]. It is then natural to expect that the AFCs continue
to hold as the temperature is increased or as the system
is perturbed by incoherent noise, as these ingredients do
not introduce long-range quantum correlations. In the
next section, we assume that the AFCs hold, and de-
scribe a protocol for purity and PT moment estimation.
We stress that we do not need any additional assump-
tion on the state to be measured. For instance, we do
not require that it can be represented efficiently by an
MPDO.

Our protocols take as an input the values of «,, S,
and the desired accuracy. For instance, the purity es-
timation protocol takes as an input «s, the correlation
length & = 85 ! and the target threshold relative error 4.
Importantly, it is not necessary to know the values of as
and 3, exactly: it is sufficient to have two estimates aeo,
&2, which upper-bound them. This is because if ap < ap
and & < &, then Eq. (34) also holds replacing ag and o
with a9 and 52 = §~2_ 1, respectively. We can choose s
and 52 arbitrarily, but the number of measurements and
post-processing operations increase parametrically with
ag and &, see Eq. (37). Therefore, the more accurately
we can estimate the values of ay and (s, i.e. the more in-
formation we have on the state to be measured, the more
efficiently we can estimate the purity and, similarly, the
PT moments. It is important to note that, in this re-
spect, the situation is completely analogous to MPDO
tomography. In that case, one assumes that the density
matrix of the system p can be described accurately by
some MPO with a bond dimension D. Such bond di-
mension does not need to be known exactly, but only
an upper bound for it needs to be known. In practice,
one can take ay and 5 ! larger than any expected length
scale in the system.

Finally, suppose that, for given state p, we have an
ansatz for as and &;. From the experimental point of
view, an important question is whether it is possible to
efficiently certify that Eq. (34) holds, with the ansatz
values as and &, for the state to be measured. While
at the moment this is an open question, a simple consis-
tency check consists in repeating the purity estimation
protocol (explained in IV B) for increasing values of the
input ansatz values ao and &2, and checking that the es-
timated value for the purity does not change, up to the
expected precision. If the estimated purity does change,
this is a “red flag” signalling the failure of the AFCs. We
refer to Sec. VI for further discussions on the possibility
to efficiently certify the validity of the AFCs.

B. Estimation protocols for states satisfying the
AFCs

First, we consider estimating the global purity of a
state satisfying the AFCs (34). We assume the following:



e we know that the system is prepared in a state p
satisfying the AFCs (34);

e we know two numerical values ag and By for which
Eq. (34) is satisfied.

Below, we detail our protocol to efficiently estimate the
purity. The proof that the protocol works is non-trivial
and is presented in detail in Appendix C. Intuitively, we
use the fact that, because of the AFC (34), the estimator

rée) defined in Eq. (17) yields a good approximation for
the purity, for values of |I;| which grow mildly (logarith-
mically) in L.

The protocol takes as an input the values of s and
B2, and consists of the following steps:

1. Choose the desired relative error § on the purity.
This can be any arbitrarily small number § > 0;

2. Take a partition of the system as in Fig. 1, where
|I;| = k and choose

k> & In(TazL/6), (36)

where & = 85 '. The reason for the functional form
appearing in the RHS is technical and explained in
Appendix C;

3. Asin Sec. IIT A, perform M; = M classical-shadow
measurements to estimate the purity of each inter-
val I, with I = I or I = I; U I;;; [we use the set
of measurements M to only determine the purity
over I, so that the total number of experimental
runs is given by (16)].

4. From the classical shadows obtained out of the mea-
surements, compute rée) defined Eq. (17). This is
the output of our protocol, giving us an estimate
for the global purity.

As mentioned, it is intuitive that the output of this
protocol rée) is, with high probability, an accurate ap-
proximation for the purity. This is proven rigorously in
Appendix C, where we show®

72211L3 70&2L 462 In2
br | (et

087/Pe) = 1| 2 8] <« T (5

(37)
Therefore, by a polynomial number of measurements M
we can guarantee that the probability that the relative
error |r§€) /P2 — 1] is larger than ¢ is arbitrarily small.
Rephrasing our result in terms of the confidence level ~,
we thus obtain

72211L3 70&2L 4€21n2
M > .
> 5 (F) (3%)

5 More precisely, Eq. (37) holds for M sufficiently large, namely
M > max {(7a2L/5)852 2 (1272910 /62) (TayL/8)*E2 10 2}, see
Appendix C.

This formalizes the anticipated result.

Note that rée) defined above is a faithful estimator for
the quantity

R-1
Hj:l TrIjUIj+1 (p%jUIjJrl)

R-1
Hj:Q Try, [Pi}

: (39)

To =

but because (15) does not hold exactly, it is not a faith-
ful estimator of the global purity Ps. Still, it is a good
approximation, as it is clear from the relation

w_l'g

40(2L e_ﬂ2k
P ’

(40)

which holds for
k Z 52 IH(QOLZL) s (41)

and follows directly from (34), cf. Appendix C. In prac-
tice, the RHS of (40) makes it necessary to consider in-
tervals I; whose length £ grows logarithmically in L to
keep the error below the desired threshold.

A similar protocol works for the PT moments. In this
case, a number of measurements which does not scale
with the system size is enough to guarantee arbitrary
accuracy with high probability, cf. Appendix C. We note
that the results of this section imply that the number of
post-processing operations to estimate the purity and PT
moments is also at most polynomial in L. This is because
the estimators (9) and (11) are constructed summing a
number of terms which is polynomial in M, and hence at
most polynomial in L.

In the rest of this section, we discuss the generality
of the AFCs. We prove analytically that they hold for
the important class of translation-invariant MPDOs and
provide numerical evidence that they are also satisfied
by thermal states of local Hamiltonians. These results
showcase the generality and versatility of our approach.

C. Proof of AFCs in Matrix Product Density
Operators

We now focus on MPDOs, a very general class of
states providing accurate approximations for several
short-range correlated density matrices, including ther-
mal states of local Hamiltonians [60, 135]. We study the
translation-invariant case, where we can provide analytic
results. We recall that a translation-invariant MPDO o
is defined by a four-index tensor A‘ZI’E, with j,k = 0,1 and
a,b=0,1...x — 1, where x is its bond dimension [129].
For a system size L, its matrix elements read

<’i1, ce ,iL|JL|j1, ce 7jL>:Azll’?;2A222’?53

cov APLoJL (42)

ar,ay’



where repeated indices are summed over. This defines a
family of normalized states®

oL

~ Tr[oy)]

PL . (43)
Using the standard notation from tensor-network the-
ory [129], we can represent Eq. (42) as

S s e S

Here each circle correspond to a tensor Afl’lz. Lower and
upper legs are associated with input and output degrees
of freedom, respectively, while the remaining ones cor-
respond to the “virtual” indices a; = 0,...x — 1. Note
that contracted legs indicate pairs of indices which are
summed over.

We first focus on the purity. We are able to show that
MPDOs satisfy the purity AFCs under a few technical
assumptions, which encode the fact that all correlation
lengths are finite but are otherwise very general. Tech-
nically, we impose a few conditions on the spectrum and
eigenstates of the transfer matrices”

o = -

where the top and bottom legs are contracted. Infor-
mally, we ask that 71 and 7 have non-degenerate eigen-
values with largest absolute value, and that the corre-
sponding eigenstates are not orthogonal. These condi-
tions are general in the sense that one needs to choose
fine-tuned examples to violate them. We refer the reader
to Appendix D for a precise statement and a detailed
discussion.

Under these assumptions, we show that py, satisfies the
purity AFCs. Note that, different from the rest of this
work, here we are considering periodic boundary condi-
tions. Since Eq. (34) was introduced for open boundary
conditions, we consider directly its global version (40),
which can immediately be generalized to the periodic
case. Clearly, the expression for ro must be modified with
respect to (39): taking into account periodic boundary
conditions, we replace it with

R
Hj:l TrIjUIj+1 (J%JUIj_H)

Mo, o7 | (46)

o =

6 We assume that the local tensors A generate a positive operator
for all system sizes L, namely oy, > 0 for all L.

7 Note that 7, is not Hermitian and that, for n = 1, we recover
the standard transfer matrix [135].
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where we assume without loss of generality that R =
L/k is an integer, while the normalization factors Tr[c?]
cancel out.

The task of proving Eq. (40) [using the definition (46)]
is carried out in Appendix D. There, we derive the follow-
ing statement: given the family of MPDOs p;, as above,
there exist ¢ > 0, and C' > 0 (independent of L) such
that, for any integer k > kyin, with

kmin = max {17 C IH(QOCXQL)} ) (47)
we have

2 2 L k¢

— — 1| < Xx3(80C + 32)—e /¢, (48)

Po k

for all L > max{(In(2°x?),4k + ¢In(2x)}. The cor-
relation length ¢ and the constant C' depend on both
the eigenvalues and eigenvectors of the transfer matri-
ces 71 and 79, cf. Appendix D. Therefore, the purity ap-
proximate factorization formula (40) holds with ay =
x2(20C + 8), and B = 1/¢. In turn, using the results
of the previous sections, this implies that the purity of
MPDOs can be estimated efficiently using our approach.®

Similarly, the AFCs for PT moments could be verified
analytically for bulk-translation-invariant MPDOs with
suitable open boundary conditions. This is slightly more
involved, as a few additional technical assumptions on
the boundaries are needed. For this reason, we do not
discuss this explicitly. Instead, the AFCs for PT mo-
ments will be numerically analyzed in detail in the next
section, together with the purity AFCs, for the physically
interesting case of Gibbs states of local Hamiltonians in
a few concrete examples.

D. Numerical study of AFCs in Gibbs states

As mentioned, it is natural to conjecture that the AFCs
are very general, as they encode the fact that all the
spatial correlation lengths in the system are finite. In
this section, we provide numerical evidence supporting
this claim, studying thermal states of two prototypical
1D local Hamiltonians. We focus in particular on the
Ising model with transverse and longitudinal fields

05071 4 heof + h.o}] | (49)

and the so-called XXZ Heisenberg spin chain

1 L-1

Hxxyz = -1 Z [0f0f +olo?  + Acfoi,] . (50)

=1

8 Note that, with these identifications, Eq. (36) implies k > kmin,
where kpin is defined in Eq. (47).
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Figure 4. Relative error &, (k, L, 8), defined in Eq. (52), as a function of k, for § = 2 and different values of L. In the left and
right plots we report numerical data corresponding to the Ising and XXZ spin chains, respectively. In the former case, we chose

hz = 1.1, h, = —0.04, while the maximal bond dimension used in the computation is x = 32. In the latter case, we set A = 2,
while x = 64.
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Figure 5. Numerical results for the minimal region size k*(d, L) required to achieve a specified precision ¢ of purity estimation,
see Eq. (53). In the plots we chose § = 0.01 and 8 = 2, while the left and right figure correspond to the Ising and XXZ spin
chains, respectively. The Hamiltonian parameters and bond dimensions are the same as in Fig. 4.

We will study the corresponding Gibbs states

_ exp(—fH)
Zg ’

where Zg is a normalization factor.
Note that the Hamiltonians H; and Hxxy are inte-
grable for h, = 0 [136] and all values of A [137], re-
spectively, although we do not expect that integrabil-
ity plays any role in the following discussion. Note also
that both Hamiltonians feature second-order quantum
phase transitions at zero temperature: For Hy the criti-
cal line is h, = 1, while Hxxyz displays a critical phase
for |A] < 1. However, we will be interested in finite-
temperature states, and since in 1D the temperature al-
ways introduces a finite length scale, we similarly expect

that quantum criticality does not play any role.”

(51)

9 An interesting question is whether our approach could be ex-

In order to assess the validity of the AFC for the purity,
we test its global version (40). To this end, we numeri-
cally compute r5(k), as defined in Eq. (39), for increasing
values of the interval size k = |I;|, and the global purity
P2. Then, we evaluate the corresponding relative error

T‘Q(k)

-1
P

er(k,L,B) =

: (52)

where we have made the dependence on k, 8, and L ex-
plicit. The calculations are carried out using the iTensor

tended to pure critical states. Although in this case there is no
spatial length scale, it is known that they can be accurately ap-
proximated by MPSs with bond-dimension scaling polynomially
in the system size [138], suggesting that our approach could be
generalized to include that case as well. We leave this problem
for future work.



library [139], by first approximating the thermal states by
MPOs of finite bond dimension, denoted by x, and sub-
sequently taking powers and traces of such MPOs. For
each quantity, this procedure is repeated for increasing
X, until convergence is reached. We refer to Appendix E
for further details.

For fixed values of L, we first test the exponential de-
pendence in k of &,.(k, L, B) predicted by (40). Examples
of our numerical data are reported in Fig. 4, showing a
very clear exponential decay. For the Ising model, we
chose a non-zero value of the longitudinal field, in order
to break integrability. Note that, for very large k, we see
an apparent plateau. We attribute this behavior to finite
numerical precision of our computations (note the very
small values of e, corresponding to these plateaus). It is
interesting to note that the decay rate for the XXZ chain
is faster than the Ising model, although higher bond di-
mensions are needed in order to accurately approximate
the corresponding Gibbs state by an MPO. In any case,
we see that quite small values of k are enough to obtain a
very good approximation of the purity. We have repeated
the calculations for different values of the Hamiltonian
parameters and [, finding consistent results.

Next, we study the functional form of €,.(k, L, 8). From
the numerical point of view, it is not straightforward to
test that it is asymptotically bounded by the RHS of
Eq. (40). Therefore, we proceed differently. Given an
arbitrary fixed § > 0, we define the minimal region size
required to achieve a specified precision ¢,

k*(6,L) = min {k : ,(k, L, §) < 8} . (53)

Assuming that e, satisfies an asymptotic bound of the
form (40), it is easy to show that k*(d, L) grows at most
logarithmically in L, namely there exist as and [y such
that

k*(6,L) < i In(asL/9) . (54)
B2
When this condition holds, the estimation protocol ex-
plained in Sec. IV B is efficient. Importantly, compared
to Eq. (35), Eq. (54) is straightforward to test by our
numerical computations.

We have verified that Eq. (54) is satisfied for several
values of the temperature and the Hamiltonian param-
eters. An example of our numerical results is given in
Fig. 5. For the Ising model, we see a very clear logarith-
mic scaling. For the Heisenberg chain, higher bond di-
mensions are required to achieve the same accuracy. Ac-
cordingly, we were not able to simulate sufficiently large
system sizes to obtain a clear logarithmic behavior. Still,
our results are always consistent with a growth of k*(d, L)
which is at most logarithmic in L, c¢f. Fig. 5. Thus, our
numerical data fully support the validity of Eq. (54). In
fact, note that the values of k*(d, L) are found to be very
small in practice. This is true even when the required
bond dimension for MPO calculations is large, as in the
case of the XXZ Heisenberg chain. This might make our
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approach useful already for relatively small system sizes,
even if compared against MPO tomographic methods.

Finally, we study the AFC for the PT moments (34).
To this end, we define the additive error

Ea(k’,L,,B) = |ﬁn[AB] — Sn[AgBlH s (55)

where we have made the dependence on k, 3, and L ex-
plicit. Because the numerical cost of evaluating the trace
of the n-th power of an MPO increases with n, we have
restricted our analyses to n = 3.

In Fig. 6 we report an example of our data for
ea(k, L, B) as a function of k, for increasing system sizes.
From the plots, two things are apparent. First, for fixed
L, the additive error displays a clear exponential decay.
Second, its values are independent of L (for values of k
much smaller than the system size). This behavior is per-
fectly consistent with Eq. (35). Note that, as in the pre-
vious plots, we observe irregular behavior for sufficiently
large k, where e, approaches a plateau and displays a
L-dependence. We interpret these effects as arising due
to numerical inaccuracies (note the very small values of
€q). Similarly, when k approaches L/2 we observe L-
dependent behavior, which can be attributed to finite
size effects. We have repeated our calculations for dif-
ferent S and Hamiltonian parameters (in each case, we
have checked that the bond dimension was large enough),
always finding consistent results.

E. Practical feasibility of purity estimation

In Sec. IV B, we have shown that, for states satisfy-
ing the AFCs, the purity and the PT moments may be
estimated by a number of measurements growing only
polynomially in the system size. Still, the degrees of
the polynomials in our bounds are high, cf. for exam-
ple Eq. (33). Accordingly, one may wonder whether our
approach could be applied in practice in experiments
with current repetition rates. It is important to note,
however, that our analysis was mainly concerned with
establishing the polynomial dependence rigorously, so
that our bounds may likely be improved by more refined
mathematical derivations. More importantly, as we have
stressed, our protocol may be improved by choosing dif-
ferent ways of estimating the local purities and PT mo-
ments, a simple variant being the method of “common
randomized measurements” [48]. These improvements
are expected to lead to polynomial bounds with lower
exponents.

Going beyond general bounds, it is important to il-
lustrate how our estimation protocol performs in prac-
tice. This is done in this section, where we exemplify
its feasibility by presenting a classical simulation of the
full protocol in an explicit case. For simplicity, we focus
on random MPSs [60, 135] of N qubits and consider the
purity of the reduced density matrix over half system.
The choice of pure MPSs is motivated by the fact that
it makes it easier to classically simulate the probability
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Figure 6. Additive error e4(k, L, 3), defined in Eq. (55), as a function of k, for 8 = 2 and different values of L. In the left and
right plots we report numerical data corresponding to the Ising and XXZ spin chains, respectively. The Hamiltonian parameters

and bond dimensions are chosen as in Fig. 4.

distribution of the measurement outcomes. At the same
time, random states model typical physical states with-
out allowing for fine-tuning. Our simulations show that
the number of measurements needed to reconstruct the
purities is order of magnitudes smaller compared to our
theoretical bounds, demonstrating that our protocol is
experimentally feasible in current quantum platforms.

The details of our simulation are as follows. We ini-
tialize the system in a random MPS with complex co-
efficients and bond dimension x [139]. Once the ran-
dom MPS is constructed, we save a copy of it and sim-
ulate the RM process (in particular, we imagine that we
have experimental access to many identical copies of the
state). In our simulation, we consider a slightly more
general measurement scheme compared to the one de-
tailed in Sec. II B. In particular, we make use of the RMs
described in Ref. [29] where each random unitary u; is
re-used for njp; local measurements. Therefore, denot-
ing by ngy the number of distinct unitaries, the total
number of experiments is nynas (so that the classical-
shadow approach described in Ref. II B is a special case
with ny = 1, ny = M). Each simulated experimental
run produces a bit-string s(™*) = (s;"k, e s’L"k), with
m = 1,...ny, k = 1...np. Note that, numerically,
we can obtain the correct probability distribution for the
measurement outcomes using the perfect-sampling algo-
rithm for MPSs [140]. We have chosen to simulate the
RM scheme with re-use of local unitaries as this scheme
is more efficient to simulate and it has been used in a
number of recent experiments [27, 30-33]

Finally, we collect the simulated measurement out-
comes to construct the purity estimator (17). Instead
of Eq. (9), we use the following estimator for the local

purities
N UM (m,k) _(m,k")
P - 23§ o)
nUnM(nM — 1) S
kK
(56)
where D[S(Im’k), ng,k )] is the Hamming distance between
(m,k) (m,k")

the bit-stings s; and s; on subsystem I. Com-
pared to (9), Eq. (56) achieves a more accurate estimate
for many repetitions njy; using a few set of distinct uni-
taries ups and is expected to be more robust against
miscalibration-errors [12]. We also checked numerically
that our results are qualitatively unchanged when using
estimators based on classical shadows.

Using the above simulation procedure, we have studied

the estimator rge) defined in Eq. (29) as a function of
the number of measurements nynjy;. We computed in

particular the statistical error ¢, = rée)/ r9, where 7y is
the r.h.s. of Eq. (15) and the full relative error € = ¢,
defined in Eq. (18). In Fig. 7, we report our data for
X = 2,3, k = 4,6 and system sizes up to L = 96 (each
plot corresponds to an average error over 20 instances of
the random MPS).

From the plots, we see that roughly 10* measurements
are enough to obtain a relative error below 10% for sys-
tem sizes up to L ~ 100. '° In addition, roughly 10°
measurements are needed to reach an error around 5%
for system sizes up to L ~ 50 (note that, for these sizes,
a direct application of RM schemes to estimate global
purities is unfeasible). As announced, these numbers
are order of magnitudes smaller than what predicted by

10 Note that in this range of the parameters, statistical and full
errors are seen to be numerically close, signalling that the devi-
ations from exact AFCs are small for k£ = 6, both for x = 2 and
x = 3.
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Figure 7. Statistical and full relative error on the bipartite purity in random MPSs, as a function of the number of experimental
runs nyna, with fixed nys = 1000. For each plot, we report the bond dimension x of the random MPS and the length of the
intervals |I;| = k in which the system is partitioned in our estimation protocol.

our general bounds, suggesting that these bounds are far
from being tight.

We stress that the number of measurements performed
in our simulations are of the order of those performed in
current trapped-ion and superconducting qubit experi-
ments, see e.g. Refs. [27, 30-33, 39]. The results re-
ported in this section thus substantiate the claim that
our protocol is practically useful for global purity and
entanglement estimation in today’s quantum platforms.

V. MIXED-STATE ENTANGLEMENT
DETECTION

In this section we study the p,-PPT conditions for
states satisfying the AFCs. In Sec. VA we first intro-
duce a set of quantities, which we call f,(p), displaying
the following properties: (i) fn(p) < 0 if and only if p
violates the p,-PPT conditions and (i7) f,,(p) can be es-
timated efficiently if p satisfies the AFCs, representing
natural probes for mixed-state entanglement. Next, in
Sec. VB, we compute f, in a few concrete cases includ-
ing Gibbs states of local Hamiltonians, and identify the
values of the system parameters for which fs, f3 < 0. The
results of this section show that our approach can be suc-
cessful in detecting entanglement even for large numbers
of qubits and highly mixed states, thus being practically
useful in many situations routinely encountered in avail-
able quantum platforms.

A. The p,-PPT conditions and mixed-state
entanglement probes

Given the density matrix pap on a bipartite sys-
tem, its logarithmic negativity (3) can be extracted
from the knowledge of all PT moments p,, with n =
1,...,dim(H4s ® Hp). Therefore, while our method is
efficient to estimate the individual PT moments, recon-
structing the logarithmic negativity is still hard, as it
requires an exponential number of them.

Luckily, the p,,-PPT conditions introduced in Sec. IT A
allow us to detect mixed-state entanglement from only a
few PT moments. For example, the first two non-trivial
elements in the family (5) only involve the PT moments
up to n = 5. Explicitly, they read

(57a)
(57b)

ps—PPT: psp1 >p3,
ps—PPT : psps > pi.

The conditions (57) can be equivalently rewritten in
terms of the quantities

f3(paB) = Pspr — P5 P [A];P;? [[g]};’;z [[i]]Pg[B] . (58a)
2 2
fs(paB) = Psps — P3 Py [A]Zz [[g];i [[f]]Ps B (58b)

where p, are the normalized PT moments defined in
Eq. (25). Indeed fs and f5 are negative if and only if
the inequalities (57) are violated.

Crucially, f3(pap) and f5(pap) can be estimated effi-
ciently if psp satisfies the AFCs. Indeed, they only de-
pend on P, and the normalized PT moments p,,, both of



which can be estimated using the protocol introduced in
Sec. IV.'1 We note that such estimation protocols allow
us to reconstruct f,,(pap) up to any arbitrary small addi-
tive error. Namely, for any arbitrary positive constant 9§,
one can construct an estimator ﬂ(le)7 with | fne) —fal <6
by polynomially many (in L) measurements and post-
processing operations. This is easily seen recalling that
Dr. (Pn) can be estimated up to any additive (relative)
error, and using that

(Pul)?

Pl <1 e o S

(59)

where the first inequality from |p,[I]| < p2[I] = Pall],
while the second follows from Hoélder’s inequality.

At this point, it is important to ask whether the quan-
tities f, are practically useful in the many-body con-
text considered in this work. For example, one could be
worried that the conditions (57) are never violated for
large L (even if the logarithmic negativity is non-zero),
or that f,, is exponentially small in L for highly mixed
states, thus requiring an exponential accuracy for its es-
timation. To address this question, consider a family
of states ,054%, defined for increasing system sizes L and

satisfying the AFCs. Suppose that we extract f, (p%;)
using our estimation protocol for a fixed approximation
error d,,. Then, the p,-PPT conditions (57) allow us to
successfully detect entanglement if

fa(pYD) < —Cs, (60)
f5(P(ALE);) < —Cs, (60b)

where Cs5,C5 > 0 are constants (independent of L) with
C, > 26,. Indeed, in these cases the statistical inaccu-
racy is smaller (with high probability) than the amount
by which fn(p(fg) is negative, allowing us to certify en-
tanglement.

In the next subsection, we study a few natural exam-
ples of states satisfying the AFCs showing that (60) hold
either for all values of L or up to very large system sizes.
Therefore, we exhibit concrete examples where f, are
provably useful for entanglement detection.

B. Mixed-state entanglement detection in FDQC
and Gibbs states

We start by studying the relations (60) in the simplest
case of FDQC states (13). We consider a family of states

11 Note that, while in Sec. IVB we only considered the purity Pa,
similar AFCs can be defined for P,, with n > 2, and hence similar
estimation protocols work to estimate higher moments. Note
also that, for the case of FDQCs, the proof of exact factorization
conditions for P2 can be trivially extended to any Py, with n > 2,
cf. Appendix A.
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where the single-qubit density matrices in Eq. (13) are
parametrized as

0i(7) = vlai) (@il + (1 =) [be) (bi] - (61)

Here |a;), |b;) are arbitrary orthonormal states, while
0 < v < 1/2 plays the role of a depolarizing parame-
ter, controlling both purity and bipartite entanglement
[y is not to be confused with the symbol previously used
for confidence levels]. We ask for which values of 4 the
conditions (57) are violated.

This problem is analyzed in detail in Appendix F. We
prove that, for generic choices of the unitary gates, there
exist 3,75 > 0 such that Eqs. (60a) and (60b) are sat-
isfied, respectively, for all vy < v3/L and vy < ~5/LY3.
Now, choosing in particular vz, = v5/L'/?, we have

Tr[p™ (vp)?] = [vi + (1 —y2)%)"
<exp [-2(yL —7i)L]
< exp [=yzL] = exp {—75L2/3} . (62)
namely
SalpP ()] > L2 (63)

Therefore, p™)(y1) provides an example where the ps-
PPT condition is violated by a finite amount C5 and, at
the same time, the global Rényi-2 entropy grows polyno-
mially, albeit sub-linearly, in the system size.'?

As a final interesting example, let us consider once
again finite-temperature states of local Hamiltonians. In
this case, the purity decays exponentially in L and we
expect that the conditions (58) fail to detect the pres-
ence of entanglement in the thermodynamic limit. In the
following we give evidence that they can nevertheless be
useful when considering systems of large but finite size.

To support this claim, we study thermal states in
the Ising model (49), and numerically compute the co-
efficients (60) for different temperatures and system
sizes. The computations are performed using tensor-
network methods, following the same strategy explained
in Sec. IVD. An example of our results is reported in
Fig. 8. In these plots, we have fixed small but other-
wise arbitrary positive numbers C3 and C5, and identi-
fied the values of 8 and L for which f3(8,L) < —Cj5 and
f5(8,L) < —Cs.

The data corresponding to the p3-PPT condition are
reported in the left plot, which clearly shows that the
values of the temperature T = S~! for which the en-
tanglement can be detected decrease with L, consistent

12 It is interesting to note that the p3-PPT condition only allows
us to detect bipartite entanglement in states with O(1) entropy.
Therefore, the ps-PPT condition improves this result by allowing
the entropy to scale as O(LQ/S). It is then natural to conjecture
that higher-n PPT conditions lead to a further improvement of
the maximal scaling to O(L®), with o approaching 1 in the large-
n limit.
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Figure 8. Density plots for the coefficients f3(8, L), f5(8, L), defined in Eq. (58) as a function of 8 and L. The data correspond
to thermal states in the Ising model (49), with h, = 1.1 and h, = —0.04. Red (blue) regions indicate the values of 8 and L for
which f3(8, L), f5(8, L) are larger (smaller) than some small values —C5 = 0.01 and —Cs = 0.001, respectively.

with our previous analysis on FDQC states. On the other
hand, the right plot shows that f5(8,L) < —C5 up to
values of the temperature (T' ~ 0.1) that do not signif-
icantly depend on L, at least up to very large system
sizes (L ~ 1024). We expect that this is a finite-size ef-
fect, namely that increasing L further, the values of T for
which entanglement can be detected will decrease. Still,
this example shows how the p,-PPT conditions may be
able to detect entanglement even for highly mixed states
and up to very large system sizes, making the estimation
protocol for PT moments practically very useful.

VI. OUTLOOK

We have studied the problem of estimating global en-
tropies and entanglement in many-qubit states, assum-
ing the validity of certain AFCs which encode the fact
that all the spatial correlations lengths in the system are
finite. We have shown that the AFCs allow one to re-
construct entropies and PT moments from local infor-
mation which can be extracted efficiently using standard
RM schemes. Exploiting this fact, we have devised a very
simple strategy for entropy and entanglement estimation
which is provably accurate, requiring polynomially-many
local measurements and post-processing operations. We
have discussed the generality of the AFCs, providing both
analytic and numerical evidence for their validity in dif-
ferent classes of states, including MPDOs and thermal
states of local Hamiltonians.

As we have argued, the protocols proposed in this work
could be practically useful to detect bipartite mixed-state
entanglement for large numbers of qubits in today’s quan-
tum platforms. This is especially true when considering

current NISQ devices from the point of view of quantum
simulation, since the AFCs hold under assumptions that
are very common in the context of many-body physics.
In addition, our work also raises important questions and
opens up a number of interesting directions.

First, our protocols assume that the state to be mea-
sured satisfies the AFCs. Therefore, an important ques-
tion from the experimental perspective is whether it
is possible to devise a complementary (and still effi-
cient) strategy to certify their validity, similar to what
can be done in the case of MPS [61] or entanglement-
Hamiltonian tomography [69].

As we have discussed in Sec. IV A, a simple but ef-
fective consistency check can be carried out by repeat-
ing our protocols multiple times, each time with an in-
creased ansatz value for the correlation lengths. If the
estimated purities or PT moments change beyond the
expected precision over different repetitions, we obtain a
“red flag” signalling the failure of the AFCs in the state
to be measured. This process, however, does not allow
one to rigorously rule out the presence of long-range cor-
relations, as this would require running the estimation
protocols using, as an input, correlation lengths which
are proportional to the system size. We envision that a
way to tackle the certification problem could be to iden-
tify a hierarchy of properties which are strictly stonger
than the AFCs and for which rigorous certification proto-
cols can be found more easily. At the moment, however,
this remains an open problem.

Next, while we have focused on 1D systems, a very nat-
ural direction is to extend our approach to higher spatial
dimensions. In this case, additional technical complica-
tions arise, but we expect that efficient estimation strate-
gies for the purity and PT moments exists under similar



conditions encoding the absence of long-range correla-
tions. We stress that this problem is particularly impor-
tant, since tomographic methods for many-qubit states
(based, for instance on tensor or neural networks) are
much less developed in higher dimensions.

Finally, we mention that our approach could also be
applied to probe other quantities which generally require
exponentially many measurements. Straightforward ex-
amples include the participation entropies [85-89] and
the so-called stabilizer Rényi entropies [92], but we ex-
pect that similar ideas could be implemented in other
contexts. One example is that of cross-platform verifica-
tion protocols [141], which involve probing the (possibly
exponentially small) overlaps between different density
matrices. Similarly, efficient estimation strategies for the
so-called Loschmidt echo [142] also appear to be within
the reach of the techniques developed in this work. While
these problems require dealing with additional technical
subtleties compared to the analysis of the entropy and
PT moments, we believe that the latter are not substan-
tial and could be overcome. We leave the study of these
applications to future research.
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Appendix A: Factorization condition for FDQC
states

1. The purity

In this Appendix we show that the FDQC states (13)
satisfy the factorization condition (14). In fact, we prove
the stronger condition

Trgen {ﬁg (pf%c)}

B Trpen [HB (p%%)} ® Trpen [ﬁB (P%TCL)}
- Trp(ph) 7

(A1)

where we introduced the n-copy cyclic permutation op-
erator Il g |i1,...4n) = |in,i1,...9n—1), and we assumed
|B| > (2¢—1), where ¢ is the circuit depth. We make use
of a graphical derivation. We show the case n =2, £ = 4,
and |B| = 8 for concreteness, but it is clear that the proof
generalizes for all values of n and ¢. The reduced density
matrix over the interval Z = AU B U C reads

Following the standard tensor-network notation, lower
(upper) dangling legs correspond to the input (output)
qubits. In addition, here and in the following upper and
lower legs in the same column which are marked with a
small rectangle of the same color are traced over. Finally,
black dots correspond to the density matrices o;.

The left-hand side of Eq. (A1) can be represented as

Teges [Ts (p35e)] =

where dangling legs are not contracted, while the gray
rectangle is a short-hand notation for the reduced den-
sity matrix (A2). Using unitarity of the gates, we get



Trpen [HB (pf%c)} = T1T5T5, where

Note that T7 and T3 are operators, while T, is a number.
Let us compare this graphical expression with the one in
the RHS of Eq. (A1). The first and second terms in the
numerator read, respectively

= T1T2><

><T2T3 .

Similarly, the denominator in Eq. (

=

i
g

) reads
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Putting everything together, and simplifying the com-
mon factors in the numerator and denominator, we ar-
rive at Eq. (Al). Finally, using the fact that Tr(pX)

Tr(ﬁxp?} ) and the relation ﬁABC = ﬁA(X)ﬁB ®ﬁc,
we arrive at

Trap(php)Trec(Phe)
Trp (PB) ' (A

Tr(phpc) =

For n = 2, this proves Eq. (14).

Next, we prove Eq. (15). Let us consider a par-
tition of the whole system & = A U B U C, where
|B| = |C| = k > 2¢ — 1. We first make use of Eq. (14).
Setting now A©® := A, BO .= B, ¢ := C we can
iterate this operation, each time splitting the interval
AU U BUY into three adjacent regions AU+ BUHD),
and CUHD with |[BUHD| = |CU+D)| = k. We continue
this procedure until |Af| = k, which gives us Eq. (15).

2. The PT moments

The goal of this Appendix is to prove Eq. (26).
We start by recalling the expression for the PT mo-
ments [102]

Tr [(pﬁj‘g)n] =Tr [ﬁAﬁB (pf%)] , (A5)

where we introduced the n-copy forward (backward)
cyclic permutation operator in the m-replica space, de-

fined by

T aliv, . in) = |insits .- -inoa) s

T plin,. . in) = lin is,...i1) - (A6)
Using this notation, it is easy to see that Eq. (A1) implies

Trpen [ﬁB (P%gc)} =
Trpen [T (p53)] @ Troen [T (52)]

Trp(p) 7

Eq. (A7) can be proved by taking the partial-transpose
with respect to A®" and C®" in both sides of (Al),
followed by complex conjugation. Next, let us take a
bipartition of the system into A and B, each divided
into two intervals A = A; U Ay and B = By U By with
|As| = |B1| = k, cf. Fig. 3(b). Making use of Eq. (A1),

we have

(A7)

Tr [(Pﬂ%)n} = TrpenTrgen ﬁAﬁBﬂTB;@nﬁBlp@

 Trgengpen (AT 5 p5%,)

TrB1 (p%l)
o TrB?"®B§’" (HBlnle’%?BQ) (A8)
Trp, (p%1) ’



Using
TrA@”@B?"(ﬁAﬁBlp%gl)
= TI‘A?H TI‘B;@" ﬁAl ﬁBl TI“A?”ﬁAz p%?j% By
= TrAig;n@)Agzm (ﬁx‘hﬁAzp%?Az)

1

TrAgan(gB;@n((ﬁAzﬁBlﬂ%Bl)[TYAQ(PZQ)T , (A9)

we finally arrive at Eq. (26).

Appendix B: Statistical-error analysis in FDQC
states

1. Statistical-error analysis for the purity

0). We consider the
protocol explained in Sec. III A and denote by 7926) [I] the
estimates for Py[I] = Tr(p?) obtained from the classical-
shadow approach. These local purities are estimated with

In this Appendix we prove Eq. (2

a non-zero relative error, i.e. ’Pge) [1]/P2[I] = (1 + €P).
We define
E:maX{|€I| IE{IJ}JU{IJ UIj+1}j} . (Bl)

We will take r®), defined in Eq. (17), as the experimental
estimate for the global purity P, = Tr(p?), choosing the
intervals I; with |I;| = k > 2¢ — 1, where £ is the circuit
depth, so that Eq. (15) holds.

We start our proof from a few preliminary lemmas.

Lemma 1. Suppose ¢ < 1/2. Then

< e(L/k)e _ 1 B2
P, se (B2)

Proof. Setting P{?[I) = Py[I)(1 +&!) recalling R = L/k,
where k = |I;| and using (15), we have

I e

= (B3)
P Hj:2 (1+¢el)
as so, using |e!| < ¢,
) _ (et [14e]”
Py~ ( g)f—2 1—¢e] 7’
(e) R—1 R
1-— 1-—-
LR k) SN i (B4)
Py — (1+¢e)-2 l1+e
Since € < 1/2, and using (1 + z) < e®, we have
1+¢€ 2e ac
= B
1—e¢ 1-— (B5)
Therefore,
()
e-L/me < T2 o aL/ke (B6)

P
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Finally, using

(I1—e)<e*—1, (B7)
we obtain (B2) O
Lemma 2. Let M > 2411, Then
s 92|1+3

Proof. We start from the bound (10). Since M > 2411,
we have in particular M > 4 and Eq. (10) implies

Var {732@ [1]} <4 (211\722[11) +4 (2]2\4”')2 . (BY)

Since by hypothesis M > 241 while Po[I] > 2711, we

have

SR (Y
and so

Var [P@[]} w. (B11)

Eq. (B8) then follows using Chebyshev’s inequality and
PoI] > 2711, O

We are ready to state and prove the main result of this
section.

Theorem 1. Let 0 < § <1 and take

M > max 28]C L2 gt
- k262 ’

(B12)

where k = |I;| > 2 (the case k =1 is trivial). Then

94k+1173
Pr [

({9 ) Py) — 1‘ > 5} <

-__= Bl
= 823 M (B13)

Proof. Recalling the definition (B1), note that if ¢ <
(k/8L)J, then ¢ < 1/2 and also et/Fe — 1 < §. Us-
ing Lemma 1, this implies

Pr H(r§e> /P2) — 1| >8] < Pr[e > (k/SL)0]

=1-"Prle < (k/8L)J]. (B14)
In more detail, the validity of the first inequality can be
seen as follows: Suppose € < (k/8L)J. Then necessarily

€ < 1/2 and so also |r§e)/7>2 — 1] < ¢ (by Lemma 1).
Therefore, the set of cases in which |r26) /Py—1| > ¢ must

be contained in the set of cases in which ¢ > (k/8L)d. In
formula, this is the first line of Eq. (B14).



From the definition of ¢ and Lemma 2, we have

Pr[e < z] = H (1 —Pr[leh] > z])
x H

(-5 (-

where we used that the random variables /i are statis-
tically independent. Therefore

— Prf|eliVitr] > )

94k+3\ 17
W)] » (BLS)

94k+3\ 21t
Prle < z] > <1 YY; > (B16)
Setting « = dk/(8L), we have by hypothesis

24k+3 /42 M < 1/2. Therefore, using 1 — z > e~2* for
0 < z <1/2, we obtain

(B17)

Prle < (k/8L)d] > exp [ 24k+11L3}

M§2k3
Plugging this into (B14), and using 1 —e™* < z, we finally
obtain (B13). O

2. Statistical-error analysis for the PT moments

In this Appendix we prove Eq. (32). Considering the
same protocol and using the same notation as Sec. 111 B,
we set

p(e) [AQBl] = P3 [AQBl] + €A231 ; (B18a)
PL[Ay] = Ps[As)(1 + ™), (B18b)
PsY[Bi) = Ps[Bi](1 + ™). (B18c)

Note that 4251 is an additive error, while 42, ¢51 are
relative errors. We also define

8:22‘A2‘+2|Bl‘ A2Bl|’|€A2|’|€Bl|} )

max { e (B19)

In the following, we will set |As| = |By| = k, where
k > 2¢ — 1 with £ being the circuit depth. With this
choice, Eq. (27) holds.

For clarity, we organize the proof into lemmas.

Lemma 3. Suppose € < 1. Then

Sée) [AQBl] — SS[AQBl} S 168, (B20)
where s,[AaB1] is defined in Eq. (27).
Proof. We start from
. 3[AsBy] + 2B
5§ 1AsBy] = pal A2 D] (B21)

P3 [AQ](I =+ 6‘42)7)3 [Bl](l =+ &‘Bl) ’
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which gives us

1557 [A2B1] — s3[A2B1]| <
ps[A2Bi]] [e42] + [eP1] + |42 P

733[142]7)3[31} (1 +€A2)(1 +EBl)
As By |

le
Pg[AQ]Pg [Bl](l + SAQ)(]. + 631) ’

+ (B22)

Denoting by A; the eigenvalues of pizzBl, we have
ps[A2B1]| < Zu ® < ZV

where we used \; € [~1/2,1] [144] and Tr[(p}%)?] =
Trlp% ] [35]. In addltlon since ¢ < 1, clearly |e42] <
1/2, [eB1| < 1/2 and so also [e4251| < |e42|. Putting
everything together, and using Ps[I] < 2721!, we finally

P[AyBy] <1, (B23)

/\

arrive at Eq. (B20). O
Lemma 4. Let M > 3-2%%. Then
3k
Pr(le??| > a) < 27— (B24a)
93k
Pr(|eP| > a) <27 IR (B24b)
B 2214:
Pr([e?2P1] > a) < 27a2M (B24c)
Proof. We start from the bound [38]
(@) 2B
Var [pg [AB]} <9 Tr (pap)
93|AB| 96|AB]
18— p[AB —— . (B2
Since M > 3-28 (and k > 1), then
18 27 6 9
— <, < B2
(M —-1)2~ M2’ (M-2)3~ M3 (B26)
Therefore
(©) AP
Var [p3 [AB]} <9 Tr (pap)
23\AB\ 26\AB|
27— pa[AB] + 9 (B27)
Since M > 3-28% we have
2|AB\ A 23|AB\
9 M Tr (pAB) 2 27Wp2[AB],
2|AB\ A 26\AB|
97 Tr (pag) > QW (B28)

In the first line we have used that ps[I] = Tr[p?] and
Holder’s inequality, which guarantees

Tr[p7]/Tr[p7] < 271/ Tx[pf] < 22111, (B29)



while in the second line we have used Tr(php) >
2-3IABl — 9-6k Pytting all together, we get

22k
Var [pée) [AB]] < 27M Tr (phs) - (B30)
Similarly, we have [38]
|Az] A
Var [P5[A42]] <9 i Tr (p,)
93| Az| 96]Az|
18— Tr (p?
+ S(M— 2 r(pAz) +6(M—2)3
2k

<275 Tr (Pa,) - (B31)

Using Tr (p%,) /(Tr(p%,))? < 1/Tx(p?,) < 2%, we ob-
tain

(e) k 4 3k
Var <2T———22 < 27T—, (B32
Pkl | S Ma s, =T P
and analogously for P§2)(B1). Egs. (B24) follow using

Chebyshev’s inequality. O

We are ready to state and prove the main result of this
section, yielding Eq. (32).

Theorem 2. Let 0 < § <1 and take

211k+9

M > 27 52

(B33)

Then
11k49

H [AsBy] — sg[AzBl}‘ > 5} <81= o

(B34)
Proof. Recall the definition (B19) and note that if ¢ <

§/16, then trivially ¢ < 1 and so, by Lemma 3, |s§e)
s3| < 4. This implies

Pr[|s{”) — s3] > 6] < Pr[e > 6/16]

—1-Pie<6/16].  (B35)

In more detail, the validity of the first inequality can be
seen as follows: Suppose € < §/16. Then trivially ¢ < 1
and so necessarily also |s§e) — s3] < 0 (by Lemma 3).
Therefore, the set of cases in which |sz(f — s3] > 0 is
contained in the set of cases for which ¢ > §/16. In
formula, this is the first line of Eq. (B35).

From the definition of € and Lemma 4, we have

Prle <] = (1= Prfle?| > 2274
x (1= Prlle™] > 227 %)) (1~ Prfje=P1] > 2271%)

ol1k 3
>(1-27

(B36)
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where we used that the random variables %7 are statisti-
cally independent. Setting 2 = §/16, we have by hypoth-
esis 27 - 211k /22 M < 1/2. Therefore, using 1 — z > e~ 27
for 0 < z < 1/2, we obtain

(B37)

911k+9
Pr[e < 0/16] > exp { 81l —— ]

Mé?

Plugging into (B35), and using 1 — e™* < z, we finally
obtain (B34). O

Appendix C: Statistical-error analysis for states
satisfying the AFCs

In this Appendix we prove the main claims reported in
Sec. IV B. Let p be a state satisfying (34) for all partitions
as in Fig. 3(a), with |B| = k > k. (and open boundary
conditions). We first prove Eq. (37).

We start with the following:

Lemma 5. Let
In(aeL/9)
By

for 0 < § < 1/2. Then, defining ro as in Eq. (39), we
have

k> (C1)

‘ 7

— 1] <46.
To(0?) ‘— ’

(C2)

Proof. First, applying iteratively (34), we get (recalling
that R = L/k)

R—1
T2
W:H@Jrgj)v (C3)
j=2
with |e;]| < age™#2% and so
, -1
2
1] = 1+e;)— 4
g 1| = | Lo +e “y
j=2
We have
R—1
H (T4¢e;) =1 < (1+age P72
j=2
< exp [ag(L/k)e_ﬁ2k] —1. (C5)
Analogously,
R—1
[[O+e)—1> 1 —ae®*)fi=2 -1, (C6)
j=2

Due to (C1), we have age™#2F < 1/2. Therefore, using
1—2z>e 2% for 0 <2< 1/2, we have

1‘_[ (1+¢;) — 1> exp [~200(L/k)e™ ] — 1.

j=2

(C7)



Therefore

R—1
eV —1< [[+e)-1<e??—1<e?—1, (C8)
j=2

<

where y = 2aq(L/k)e 2%, Since 1 — e¥ < ¥ — 1, this
implies
R-1

H (1+¢;) — 1| < exp [2aa(L/k)ePF] — 1.
=2

(C9)

Finally, due to (C1), we have 2as(L/k)e #2% < 1. There-
fore, using e* — 1 < 2z for 0 < z < 1, we arrive at

4:0[2L eiﬁzk

‘TrZ)?) - 1‘ < <45.  (C10)
O
Next, we prove Eq. (37), via the following:
Theorem 3. Let 0 < § < 1/2 and set
p = le2l/o). (c11)
B2

Choosing

81n2 41n2
OéQL B2 L2210 OéQL B2
M > max { (5) T (o , (C12)

and recalling the definition (17), we have

41n2

Pr [ (4 /P2) — 1] 2 76] < 2L (azL

B2
I 5> - (C13)

Proof. Set rée)/rg = (14¢€1) and ro /Py = (1+¢2), where

r{? is defined in Eq. (17). Using Lemma 5 (and that
d < 1/2), we have |es] < 4§ and so

T2

<46+ 3 .
Py < 40 + 3eq|

(C14)

If |e1] < 6, then |r2€)/732 — 1] < 76. Therefore, the set of

cases in which |r§e)/732 — 1| > 76 is contained in the set
of cases in which |e1]| > §. In formula,

Pr(|(r{) /Py) — 1] > 78] < Pr[|(r$? fra) — 1] > 8]].
(C15)

Thanks to Eq. (C12), we can use Theorem 1, yielding
94k+1173

<

02k3M

2L L3 (oL P2
<5 (%) o

94k+11]3
82 M

41n2

Pr|(ry") /r2) — 1| > 6]

IN

which completes the proof. O
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Note that, in order to recover Eqgs. (36) and (37), we
simply rename &' = 74.

Finally, we present a technical result showing that the
PT moments can be estimated efficiently, assuming that
the state to be measured satisfies the AFCs. We focus
for simplicity on the case n = 3 and follow a protocol
similar to that of Sec. III B. Namely, we take sée) [AsBy],
defined in (29), as our estimator for ps[AB], and, for any
0 <§ <1, we choose

b= In(2a3/9)
263
Finally, we perform M measurements to estimate

p3[A2Bi], P3[As], and Ps[Bi] each (so the total number
is Mp = 3M). We can then prove the following:

(C17)

Theorem 4. For any 0 < § < 1/2, set

In(23/6)
fp = Re2s/0) C18
25, (C18)
If
M7 (208 £ C19
= () 7 (c19)
then
© - 81-29 204\ 2F
Pr (|57 5| 2 9] < " (55 (C20)

Proof. Our estimator for the normalized PT moment
p3[AB] is

() Py [AsBy]

s = 13 2Pl (C21)
P PA P By]

First, suppose |s3 — sée)| < 0/2. Then, using Eqs. (35)
and (C18), we have

1557 — Ba| < |85 — s3] + |53 — B

< (6/2) + (5/2) =6. (C22)

> 4 is
contained in the set of cases in which |s§e) — s3] > §/2,
namely

Therefore, the set of cases in which |sge) — P3|

Prls§” — ps| > 8] < Prl|s§” — s3] > 0] (C23)

Finally, thanks to Eq. (C19), we can apply Theorem 2,
yielding

111ln2

i 81-2° /205 7%
el - o] 2 ) < S5 (%)

(C24)

O



Appendix D: AFCs and MPDOs

In this Appendix we prove that the purity AFCs hold
for MPDOs. To this end, we assume the following con-
ditions on the transfer matrices (45):

(A) The matrices 71 and 75 admit the spectral decom-
position

x—1
1 1
= NRPNLYT

(D1la)
j=0
x°—1
=Y wRPWLP, (D1b)
=0

where we assume |[A\g| > |A;|, |no| > |u;| for all
j > 1, i.e. 71, 7o have a trivial Jordan form and a
finite gap.'® Note that we can also assume without
the loss of generality that A\g = 1 (which implies

o > 0, since pr, > 0 for all L). Finally, |R§”)> and

<L§")\ are the left and right eigenstates, i.e, they
are vectors on the left/right virtual indices of 7,
and 79 which are normalized such that

(LRMY =65 n=1,2. (D2)

(B) We further need to assume the technical conditions
1 1 2

(16”1 @ (LG DIRE) 0.

(LR @ 1R # 0,

(D3a)
(D3b)

which again are quite general, as orthogonality re-
quires fine-tuning.

We use the same notations and assumptions as in
Sec. IV C, so that

_ Tr[o?]
P2 = Wl oY
and
R
Py = Hj:1 TrIjUIj+1 (U%julj+1) , (D5)

Hf:l Try, [Ui}

where |I;| = k and R = L/k is an integer.
First, we introduce the correlation lengths

~& _omaxgso{N[} x| maxgso{lpyl} (D6)
Ao ’ o ’

13 The assumption that 71 and 72 can be diagonalized is purely
technical and not necessary. However, we keep it here as it makes
the analysis simpler and it is in any case quite general.
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and also

C = maX(CIa CQ) .

Next, given the spectral decomposition in Egs. (D1), we
define

(D7)

o { (LS LRI R (L RS R )| }

(Lo LG 1RGN L | RS Ry )|
(D8)
Note that the denominator is non-vanishing because of

Egs. (D3). We can now state the main result of this
section.

X
(3,k,1)
#(0,0,0)

Theorem 5. Take |I;| = k with

k > kmin = max {1,(In(20Cx*L)} . (D9)
Then, for all
L > max{¢In(2°x?), 4k + CIn(2x)}, (D10)
we have
T2 2 L —k/¢
2 1] < x3(80C + 32) e K/, (D11)
Ps k
Proof. Using Egs. (D1), we have
ingl ok uk 3
P e, o)
(Zsx)
where
1+ 0 (g 11o)
s Z]_l (13/ o) B (D13)

(14 T /r0t)

Since by hypothesis L > ¢; In(2y), we have ye %/ <
1/2, and so

€| <4 (XQe_L/C"’ +2xe LG 4 X26—2L/<1>

< 24y 2e /¢, (D14)

On the other hand

x—1
Tefo?] = > AT e (L)
7,k=0

x>-1

I
ST RPN (R @ |RY)).
=0

(D15)

Therefore, recalling the definition (D8), we have

L—|I I
Trfo7) = A (LG 1LY | REY)

< (LPIRSYIRSYY (1+ &) (D16)
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Figure 9. Scaling of the relative error e, (k, L, 8), defined in Eq. (52), as a function of the bond dimension x used to approximate
the thermal state. In the left panel we show data for the Ising chain while the right panel shows data for the XXZ chain. In
both cases we use the same parameters as in Fig. 4. Data shown for k = 4, other values of k show similar behavior with x = 16
being sufficient for convergence in the Ising model, while the XXZ model appears to be well converged from y = 64.

where

Iy < —(L—11))/¢ 2 |11/
le’] < 2Cxe +Cx%e
FOxZe2E-D/G 90y 3e=(L=ITD/G - I11/¢2

+CX46—2(L—\ID/<1e—ll\/éz . (D17)

Since by hypothesis L > 4k + (1In(2x), it is easy to ver-
ify that all the five terms above are upper bounded by
Cx?e~M1/¢ (recall that |I| < 2k for all I), and so

lef] < 5Cx2e /¢ < 5Cy2e /¢, (D18)

where we used that either |I| = k or |I| = 2k, and so
|I| > k. Therefore

R
[l— Trr01,,, (Ui L)

Hf=1 Try; [U% }

( ) . o

Hle(l +eliVliv)
with |e!| < 5Cx%e~*/¢. Combining this with Eq. (D12),

R ,
Hj:l(]- +eli)
we arrive at
(148 ' -1
( ITZ,(1+eh) )

_ o Hf:1(1 + eliVhitn)
= (1 + 5) l Hf:l(l + 51_7)

_ M
N

r2 [T, (1 + el

Po

where £ is given in Eq. (D13).
Next, we define
Ezmax{\51| :Ie{]j}jU{IjUIjJrl}j} . (D21)

By hypothesis &k > kpin [kmin 18 given in (D9)]. There-
fore, using (D18) we have |e/| < 1/2 for all |I| and so

also £ < 1/2. Therefore, we can apply the derivation in
Lemma 1 to show

R I;Ulj4
o (e 1| <eW/Me_1. (D22
1Sy (1+eh) B

Since by hypothesis L > £In(2°x?), we also have &€ < 1/2
[cf. Eq. (D14)], and so (D20) yields

T2
— —1
P

(D23)

‘ < 2(eME/ME 1) 422

Finally, we note that Eq. (D9) implies that (4L/k)e <1,
and using e* — 1 < 2z for 0 < z < 1, we arrive at

Po

’ 2 1' < 80X2C(L/k)e™*/¢ 4 25y 2e~L/¢

< x2(80C + 32)%6—’” <. (D24)

O

This theorem proves Eq. (48), under the condi-
tion (47). Therefore, the approximate factorization prop-
erty (40) holds for MPDOs, with the identification
B2 =1/¢.

as = (20C + 8)x?, (D25)

Appendix E: Details on the numerical computations

In this Appendix we provide further details on the nu-
merical computations performed to obtain the data pre-
sented in Secs. IVD and V. As mentioned, the calcula-
tions are carried out using the iTensor library [139], by
first approximating the thermal states by MPOs of bond
dimension x and subsequently taking powers and traces
of the density matrices represented in this way. For each
quantity, we have always verified that the results were



stable upon increasing the bond dimension x. An ex-
ample of our data is reported in Fig. 9, where we study
er(k, L, B), defined in Eq. (52), as a function of the bond
dimension y used to approximate the thermal state. In
general, we have found that relatively small bond dimen-
sions are enough in the quantum Ising chain, while larger
bond dimensions are required in order to observe conver-
gence in the Heseinberg model.

Appendix F: Technical details on the PPT
conditions

The goal of this Appendix is to identify the condi-
tions under which the class of states p(*) () introduced
in Sec. VB satisfy Eqgs. (60) for all system sizes L and
some suitable constants C3, C5 independent of L.

For concreteness, let the circuit depth £ be even, ¢ = 2k
with & > 1 (a similar discussion holds for £ = 2k +1) and
take a bipartition of the system as in Fig. 10. We group
neighboring sites into blocks containing ¢ = ¢ — 1 qubits,
forming a new super qudit associated with a Hilbert-
space of dimension d = 2/~1. Tt is easy to show that
the circuit can be rewritten as a depth-2 quantum circuit
acting on the super qudits, cf. Fig. 10. Therefore (as-
suming without loss of generality R = L/q is an integer)

L/q t
(1) =V | Qus | [V, (F1)
j=1

=1 " i
where w; = ®,_; 0,44, While

H Vajii,2j42 | (F2)

J

vV = [ T] Vajzis
J

is the depth-2 FDQC acting on the super lattice.

As it is manifest from Fig. 10, the region A contains all
super qudits with labels from 1 to L/2q, while B contains
all those with labels from L/2¢+1 to R = L/q. Define the
sets of super qudits S = {R/2 — 1,R/2}, S2 = {R/2 +
1,R/2+ 2} and

Psis, = Wwrjo_1 ® Wr/2 ® Wrjat1 @ wrjaraW, (F3)

where W = Vg/o r/241Vr/2-1,r/2VR/241,R/242. Note
that pg,s, is different from the reduced density matrix
over S1 U Sy. Using the graphical representation for the
blocked circuits and Eq. (27), it is simple to show

ame T [(ss) ] -
p = = = =!8y,
" Trsl [PgJTrSz [sz] "
where ﬁ5'1 = TrSz [/3315'2] and ﬁ5'2 = TrS1 [/3515'2]' There-
fore, p,[AB] coincides with the normalized PT moments

of the state pg, s,, supported on four super qudits. Next,
it is also easy to compute

PulA] = Trg, [p5,][v" + (1
Pn[B] = Trs, [f’gg]hn +(1

_ ,Y)n]L/Z—Qq ,
—)ERe(FD)
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Finally, setting

o T‘I‘Sl [ﬁ%l]QTrsé [ﬁ%JQ F6
_ Dslpn [T PR (F6)
rs, [psl] Is, [pSJ
55 _ TI‘Sl [ﬁél]QTrsé [ﬁ452}2 (F?)
TrSl [ﬁgl]TrSQ [ﬁ332]Tr31 [ﬁgJTrs2 [ﬁgg] ’
we arrive at
_ 2 1— 212L—8q
fs = 33 — S3t3 R ) (F8a)

[v3 + (1 — )3 L4’
B - 4+ 1— 412L—8q
f5 = 8583 — sit5 [’y?’ n (1 _[77)3]£4q [::2) _]|_ (1 _ 7)5]L74q .

(F8h)
Now, define
K3 = max{33(y) — 8(1)ls(y) : 0 <y < 1/4},  (F9)
K5 = max{35(7)33(7) — 81(1)ts(7) : 0 < v < 1/43
(F10)
and
Hy = max{|B()is(1) : 0 <7 < 1/4},  (FI1)
Hy = max{|2()is(1) 07 < 1/4}. (F12)

The constants K3, K5, Hs, and Hys depend on the spe-
cific choices of the unitary gates forming U®). For non-
entangling gates, K3 and Kj5 are positive, but for generic
choices of gates one has K3 < 0 and K5 < 0. We are
ready to state our main result.

Theorem 6. Suppose K3, K5 < 0. Then, assuming
without loss of generality v < 1/4 and defining

1/3
G = H;J, 73 :*fiv V5 = (SKHZ) / , (F13)
we have
0<y<7/L=f3<-Cs, (F14)
while
0<y<s/LY? = f5 < =G5, (F15)
for all system sizes L.
Proof. We start from Eq. (F8a) and note
[7;3‘:_ ((11—_ 1);}2 e, (F16)
with 0 < e3 <+ for 0 <~ < 1/4. Therefore
fs < K3+ 85t3[1 — (1 —e3)" 7
<Ky 4 Hll—(1—y)P~4).  (FI7)



26

NN
N~ =~ B e o
-1 -1 £-1, (-1¢-1 (-1

Figure 10. Any FDQC of depth £ can be rewritten as a depth-2 quantum circuit after grouping £ — 1 qubits into a single qudit.
In the middle picture, we highlight with different colors sets of gates defining the two-qudit gates in the grouped lattice (colored
rectangles in the right figure). In all the figures, a dashed orange line separates the regions A and B, defining the bipartition
of the system.

Using 1 —v > e for 0 < < 1/4, we get

f3 < K3 + Hz[l — e~ 2(L—40)]

< K3+ 2H3vL. (F18)
Hence, if v < 73/L, we finally arrive at
f3 < K3/2=-Cs. (F19)
Analogously, we have
4 (1 — )42
T T )
with 0 < e3 < 293 for 0 < v < 1/4. Therefore
fs < K5+ 83ts[1 — (1 — e5)" 7]
< Ko+ Hyl— (1- 295519, (F21)

1]
2]
3]

Using 1 —z > e 2% for 0 < x < 1/4, we get

f5 < K5+ Hs[1 — 3_473@_4@]

< K5+ 4H573L. (F22)

Hence, if v < v5/L'/?, we arrive at
f5s <Ks5/2=-Cs. (F23)
O
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